extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2xC6).1(C32:C4) = He3:4M4(2) | φ: C32:C4/C3:S3 → C2 ⊆ Aut C2xC6 | 72 | 6 | (C2xC6).1(C3^2:C4) | 432,278 |
(C2xC6).2(C32:C4) = C22:(He3:C4) | φ: C32:C4/C3:S3 → C2 ⊆ Aut C2xC6 | 36 | 6 | (C2xC6).2(C3^2:C4) | 432,279 |
(C2xC6).3(C32:C4) = C3xC62.C4 | φ: C32:C4/C3:S3 → C2 ⊆ Aut C2xC6 | 24 | 4 | (C2xC6).3(C3^2:C4) | 432,633 |
(C2xC6).4(C32:C4) = C2xC33:4C8 | φ: C32:C4/C3:S3 → C2 ⊆ Aut C2xC6 | 48 | | (C2xC6).4(C3^2:C4) | 432,639 |
(C2xC6).5(C32:C4) = C33:12M4(2) | φ: C32:C4/C3:S3 → C2 ⊆ Aut C2xC6 | 24 | 4 | (C2xC6).5(C3^2:C4) | 432,640 |
(C2xC6).6(C32:C4) = C2xHe3:2C8 | central extension (φ=1) | 144 | | (C2xC6).6(C3^2:C4) | 432,277 |
(C2xC6).7(C32:C4) = C22xHe3:C4 | central extension (φ=1) | 72 | | (C2xC6).7(C3^2:C4) | 432,543 |
(C2xC6).8(C32:C4) = C6xC32:2C8 | central extension (φ=1) | 48 | | (C2xC6).8(C3^2:C4) | 432,632 |