Extensions 1→N→G→Q→1 with N=C2xC6 and Q=C32:C4

Direct product G=NxQ with N=C2xC6 and Q=C32:C4
dρLabelID
C2xC6xC32:C448C2xC6xC3^2:C4432,765

Semidirect products G=N:Q with N=C2xC6 and Q=C32:C4
extensionφ:Q→Aut NdρLabelID
(C2xC6):1(C32:C4) = C3xC62:C4φ: C32:C4/C3:S3C2 ⊆ Aut C2xC6244(C2xC6):1(C3^2:C4)432,634
(C2xC6):2(C32:C4) = C62:11Dic3φ: C32:C4/C3:S3C2 ⊆ Aut C2xC6244(C2xC6):2(C3^2:C4)432,641
(C2xC6):3(C32:C4) = C22xC33:C4φ: C32:C4/C3:S3C2 ⊆ Aut C2xC648(C2xC6):3(C3^2:C4)432,766

Non-split extensions G=N.Q with N=C2xC6 and Q=C32:C4
extensionφ:Q→Aut NdρLabelID
(C2xC6).1(C32:C4) = He3:4M4(2)φ: C32:C4/C3:S3C2 ⊆ Aut C2xC6726(C2xC6).1(C3^2:C4)432,278
(C2xC6).2(C32:C4) = C22:(He3:C4)φ: C32:C4/C3:S3C2 ⊆ Aut C2xC6366(C2xC6).2(C3^2:C4)432,279
(C2xC6).3(C32:C4) = C3xC62.C4φ: C32:C4/C3:S3C2 ⊆ Aut C2xC6244(C2xC6).3(C3^2:C4)432,633
(C2xC6).4(C32:C4) = C2xC33:4C8φ: C32:C4/C3:S3C2 ⊆ Aut C2xC648(C2xC6).4(C3^2:C4)432,639
(C2xC6).5(C32:C4) = C33:12M4(2)φ: C32:C4/C3:S3C2 ⊆ Aut C2xC6244(C2xC6).5(C3^2:C4)432,640
(C2xC6).6(C32:C4) = C2xHe3:2C8central extension (φ=1)144(C2xC6).6(C3^2:C4)432,277
(C2xC6).7(C32:C4) = C22xHe3:C4central extension (φ=1)72(C2xC6).7(C3^2:C4)432,543
(C2xC6).8(C32:C4) = C6xC32:2C8central extension (φ=1)48(C2xC6).8(C3^2:C4)432,632

׿
x
:
Z
F
o
wr
Q
<