Extensions 1→N→G→Q→1 with N=C2×C6 and Q=C32⋊C4

Direct product G=N×Q with N=C2×C6 and Q=C32⋊C4
dρLabelID
C2×C6×C32⋊C448C2xC6xC3^2:C4432,765

Semidirect products G=N:Q with N=C2×C6 and Q=C32⋊C4
extensionφ:Q→Aut NdρLabelID
(C2×C6)⋊1(C32⋊C4) = C3×C62⋊C4φ: C32⋊C4/C3⋊S3C2 ⊆ Aut C2×C6244(C2xC6):1(C3^2:C4)432,634
(C2×C6)⋊2(C32⋊C4) = C6211Dic3φ: C32⋊C4/C3⋊S3C2 ⊆ Aut C2×C6244(C2xC6):2(C3^2:C4)432,641
(C2×C6)⋊3(C32⋊C4) = C22×C33⋊C4φ: C32⋊C4/C3⋊S3C2 ⊆ Aut C2×C648(C2xC6):3(C3^2:C4)432,766

Non-split extensions G=N.Q with N=C2×C6 and Q=C32⋊C4
extensionφ:Q→Aut NdρLabelID
(C2×C6).1(C32⋊C4) = He34M4(2)φ: C32⋊C4/C3⋊S3C2 ⊆ Aut C2×C6726(C2xC6).1(C3^2:C4)432,278
(C2×C6).2(C32⋊C4) = C22⋊(He3⋊C4)φ: C32⋊C4/C3⋊S3C2 ⊆ Aut C2×C6366(C2xC6).2(C3^2:C4)432,279
(C2×C6).3(C32⋊C4) = C3×C62.C4φ: C32⋊C4/C3⋊S3C2 ⊆ Aut C2×C6244(C2xC6).3(C3^2:C4)432,633
(C2×C6).4(C32⋊C4) = C2×C334C8φ: C32⋊C4/C3⋊S3C2 ⊆ Aut C2×C648(C2xC6).4(C3^2:C4)432,639
(C2×C6).5(C32⋊C4) = C3312M4(2)φ: C32⋊C4/C3⋊S3C2 ⊆ Aut C2×C6244(C2xC6).5(C3^2:C4)432,640
(C2×C6).6(C32⋊C4) = C2×He32C8central extension (φ=1)144(C2xC6).6(C3^2:C4)432,277
(C2×C6).7(C32⋊C4) = C22×He3⋊C4central extension (φ=1)72(C2xC6).7(C3^2:C4)432,543
(C2×C6).8(C32⋊C4) = C6×C322C8central extension (φ=1)48(C2xC6).8(C3^2:C4)432,632

׿
×
𝔽